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ABSTRACT

Sustained, reliable hypersonic flight has not yet been achieved, and has proven

to be di�cult for several reasons. One such reason is the prediction of transition —

where the flow over the vehicle is no longer laminar, and is instead turbulent. Until this

transition location can be reliably calculated, the design of hypersonic flight vehicles

(in particular their control surfaces) will be di�cult, if not impossible.

At the high air temperatures experienced during hypersonic flight, binary gases,

namely oxygen (O2) and nitrogen (N2) are able to dissociate. The primary goal of this

thesis is to understand what e↵ect, if any, these dissociative “real gas” e↵ects have on

the second-mode instabilities of a hypersonic boundary layer. If it is found that the

real gas e↵ects make no significant di↵erence to stability, then designing under an ideal

gas approximation will be e↵ective. On the contrary, if real gas e↵ects greatly a↵ect

the instabilities, then they must be considered in the design of hypersonic vehicles.

Additionally, this thesis presents these di↵erences in the context of the thermoa-

coustic interpretation of second-mode instability. The thermoacoustic interpretation

describes possible reasons for why certain frequencies are less stable than others, as

well as where the energy for the instability growth is provided. Once the profiles and

instabilities for the ideal and real gas cases are determined, their alignment with this

interpretation is be further analyzed.
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Chapter 1

BACKGROUND

1.1 Hypersonic Flight

The realm of hypersonics refers to objects traveling at speeds higher than Mach

4 (that is, 4 times faster than the speed of sound) [1]. At sea level, this corresponds

to speeds greater than 1.36 kilometers per second. The world has achieved hypersonic

flight: Rockets re-entering the atmosphere regularly travel at Mach 25, and the Apollo

missions which landed astronauts on the moon achieved an awe-inspiring Mach 36 [2].

Sustained, reliable, hypersonic flight, however, is a di↵erent story[1]. There have been

several attempts to design and build hypersonic transport vehicles, primarily funded

by U.S. Air Force and the U.S. Department of Defense [2]. Rather than taking shape

as rockets, these vehicles look similar to traditional aircraft, and hope to take o↵ and

land like them too. Unfortunately, these projects are yet to come to fruition, ending

typically in cancellation due to complexity in design [2]. In 2004, NASA tested their

Hyper-X X43 Autonomous Hypersonic Vehicle. The goal of this program was to test 3

scramjet vehicles at Mach 7 and Mach 10, and collect data for comparison with wind-

tunnel test conditions [3]. This generated a real-world dataset, for use in verification

of both simulations and wind-tunnel scaled experiments.

At these high speeds, traditional aerodynamics (which have been studied in

great detail) are no longer su�cient to predict the flow of fluid past a vehicle [4].

Instead, the analyses become more complex, and phenomena which don’t play a role in

lower-speed dynamics (for example, chemical reactions in the air) may become critical.

Developing controlled, hypersonic flight has certainly proved di�cult in the past —

The X43 program mentioned earlier, for example only flew 3 missions. The first failed
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catastrophically, lacking the flight surfaces necessary for su�cient control. The second

and third missions succeeded, but managed powered flight for only approximately 11

seconds each [2].

So why pursue hypersonics at all? The field has drastic implications in multiple

sectors, primarily defense and commercial air transport [4]. In those same X43 tests

which lasted just over 10 seconds, the vehicles travelled 15 miles (Mach 6.83) and 20

miles (Mach 9.68) [3]. A hypersonic commercial transport could make the flight from

New York to Los Angeles in just over an hour travelling at Mach 5 — compared to

the 6 hour flight at subsonic aircraft speeds [4]. Clearly, the ability to traverse such

great distances in small amounts of time will prove useful in defense applications as

well. Finally, spacecraft undergoing atmospheric reentry commonly reach hypersonic

speeds [2]. Deeper understanding of hypersonic flight will drastically improve chances

of success in the critical, most dangerous part of spaceflight missions.

Studying and comprehending the instabilities in a hypersonic boundary layer

will allow us to better predict where the flow transitions from laminar to turbulent.

This “tripping” of the flow is attributed to several factors, but the asymmetric drag

and the frictional heating taking place are some of the most crucial phenomena which

still are not understood [5]. Knowing what types of flow are present at di↵erent points

on a flight vehicle is crucial - without this knowledge, e↵ective control surfaces cannot

be designed, leading to catastrophic failure. Overall, understanding boundary layer

instabilities will enable the design and production of hypersonic vehicles which are

safer, reusable, and more economically viable.

1.2 Thermoacoustic Interpretation of Second-Mode instability

This thesis will focus on studying the e↵ects of binary gas chemical reactions

on second-mode instability in a Blasius boundary layer. Second-mode instability is a

key driver of the laminar to turbulent flow transition for axisymmetric flow at Mach

numbers of approximately 4 and greater, making it an important consideration when

2



designing a hypersonic vehicle [6]. These instabilities appear as a streamwise prop-

agating disturbance, with acoustic signatures in the ultrasonic range. Kuehl (2018)

proposes a new theory by which we can understand the fundamental dynamics of

second-mode instabilities, dubbed a ‘thermoacoustic interpretation’.

In this theory, the instability is modeled as a thermoacoustic resonator, resonat-

ing in an “acoustic impedance well” formed within high-speed boundary layers. The

object wall has infinite acoustic impedance, and near the sonic line (where the velocity

is equal to the speed of sound, or M=1 [7]) a secondary peak in impedance is formed

by strong boundary layer density gradients. The low impedance section between them

is known as the “acoustic impedance well.” The existence of this well is necessary to

maintain acoustic resonance which drives the second-mode instability[6]. Inside this

well, the second-mode appears as a quarter-wavelength standing wave which is driven

by thermoacoustic Reynolds stresses. Changing the shape or size of this impedance

well has a direct e↵ect on the strength of the instability, resulting in di↵erent transition

locations.

Figure 1.1: Phases of oscillation for a thermoacoustic second-mode instability in a
hypersonic boundary layer, reproduced with permission from Batista 2019.
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1.3 Chemical E↵ects on Stability

Tumin, Ulker, and Klentzmann (2012) have shown that chemical reactions of

a binary gas in a hypersonic boundary layer can alter the second-mode instability

dynamics [8]. At the high temperatures associated with hypersonic flight (atmospheric

re-entry, for example), air no longer behaves as an ideal gas [9]. Instead, there are

vibrational excitations and gaseous dissociations taking place, which cause the ideal

models to break down. The “real gas e↵ects” tend to stabilize the first-mode instability

(which is believed to be the supersonic extension of the viscous Tollmien–Schlichting

instability), and destabilize the second-mode instability. Additionally, the inclusion of

binary gas dissociation appeared to reduce the equilibrium wall temperature, under

the assumption that the wall was adiabatic [8].

The selection of which species to model yields di↵erent results on stability.

Oxygen, for example, has a lower dissociation energy than nitrogen — this tends to

absorb energy fluctuations and increase the stability of the flow, whereas the same

flow conditions modeled under a binary nitrogen species was less stable. This thesis

focuses on both the oxygen and nitrogen binary gas models, in order to highlight

the stability di↵erences between chemically reactive and ideal-gas boundary layers.

Klentzman and Tumin (2014) studied two cases: 1) the chemical reactions taking

place were equilibrium, or 2) ”non-equilibrium,” the free stream was assumed to be a

nearly-pure binary gas. In their research, they found that chemical equilibrium cases

had been explored in depth, but the non-equilibrium cases would have a di↵erent,

significant impact on stability [10]. In this thesis, we seek to extend their results in the

context of thermoacoustic interpretation.
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Chapter 2

METHODOLOGY

2.1 Ideal Gas, Compressible Blasius Boundary Layer Calculations

In order to solve for the Blasius boundary layer profiles in an ideal gas, the fol-

lowing equations were solved. These equations were derived in [11], and are reproduced

here with permission. First, there is the conservation of mass:

@⇢

@t
+r · (⇢u) = 0

Which can be rewritten as:

@⇢

@t
+

✓
@⇢u

@x
+

@⇢v

@y
+

@⇢w

@z

◆
= 0 (2.1)

Where ⇢ is the density, t is time, and u, v, and w represent the x, y, and z components

of velocity, respectively. Next, the x-momentum equation, given in the compressible

form:

⇢

✓
@u

@t
+ u ·ru

◆
= r(�P + 2µeij + �r · u) (2.2)

Here P is the thermodynamic pressure. µ is the first coe�cient of viscosity, and �

is the second coe�cient of viscosity. The strain rate tensor eij = 1
2

⇣
@ui
@xj

+ @uj

@xi

⌘
. A

Newtonian fluid is assumed. Lastly, the energy equation is derived, starting in the

general form:

⇢
De

Dt
= Q̇�r · u2 � P (r · u) + �

In this equation, e represents energy, Q̇ is the heat generation, and � is the viscous

dissipation of the form

� = (2µ+ �)

�
@u

@x

�2
+
⇣

@v

@y

⌘2

+
�
@w

@z

�2
�
+ µ

⇣
@w

@y
+ @v

@z

⌘2

+
�
@w

@x
+ @u

@z

�2
+
⇣

@v

@x
+ @u

@y

⌘2
�

+ 2�
h
@u

@x

@v

@y
+ @u

@x

@w

@z
+ @v

@y

@w

@z

i
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When we assume that the fluid is an ideal gas and a Stokes fluid (� = �2
3µ),

and we use Fourier’s Law pertaining to heat conduction, this becomes:

⇢cp
DT

Dt
= (r · kr)T � P (r · u) + �+ Q̇ (2.3)

The equations derived here have terms for all the spatial dimensions (x,y,z), as well as

time (t). For this thesis, the flow was assumed to be steady state and two dimensional

— that is, only varying in x (the streamwise direction) and y (the wall-normal direc-

tion), with w = 0. This simplifies the equations, removing terms with time variation

(for example @⇢

@t
in equation 2.1), and dependence on w. The compressible Blasius

boundary layer equations are listed below, reproduced from Kuehl (2018) [6].

f 000 =
g0f 00

g + C1
� g0f 00

2g
� ff 00 (g + C1)

C0g1/2
(2.4)

g00 =
g02

g + C1
� g02

2g
� Pr(� � 1)M2f 002 � Prfg0 (g + C1)

C0g1/2
(2.5)

In the above equations, the following symbols are used:

f 0 =
u

Ue

, g =
T

Te

, C0 =
CµT

1/2
e

µe

, C1 =
S

Te

, Cµ =
µref

T 3/2
ref

(Tref + S)

Pr is the Prandtl number, ⌫

↵
, where ⌫ is the kinematic viscosity, and ↵ is the thermal

di↵usivity. Ue, Te, µe correspond to the edge velocity, temperature, and dynamic vis-

cosity, respectively. The ref -subscripted quantities represent reference quantities from

Sutherland’s Law, and S is the Sutherland temperature, which are all tabulated val-

ues. The system of di↵erential equations 2.4–2.5 was solved using a numerical solver,

outputting the profiles of velocity, density, and temperature within the boundary layer.
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2.2 Chemically Reacting, Compressible Blasius Boundary Layer Calcula-

tions

In order to apply the chemistry e↵ects to the boundary layer solution, the au-

thors of Ref. [8] first solved the momentum (2.7) and continuity (2.6) equations.

Afterwards, they separately solved the energy (2.9) equation, and compared it to the

results of their species conservation (2.8) equation. The solution was iterated upon

until desired convergence was reached, at which point the code outputs a set of profiles

corresponding to the Blasius Boundary Layer solution.

In the code provided by Tumin [8], the reactions for either Nitrogen or Oxygen

binary gas dissociation could be enabled, though not simultaneously. The wall (flat

plate) could be specified as either adiabatic or held at a constant temperature, as

well as non-catalytic or partially catalytic. The user specifies the length of the plate,

which is the streamwise distance from the nose at which the profiles are generated.

Additionally, the user specifies the free stream temperature, pressure, and velocity to

set up the test conditions.

Tumin’s code also works on an assumption of steady state, two-dimensional flow,

neglecting crossflow (w = 0). This yields a similar equation for mass conservation:

@(⇢u)

@x
+

@(⇢v)

@y
= 0 (2.6)

The equation for x-momentum (from the compressible Navier-Stokes) is also similar,

though written in a slightly di↵erent form:

⇢u
@u

@x
+ ⇢v

@u

@y
=

dpe
dx

+
@

@y

✓
µ
@u

@y

◆
(2.7)

Here, pe represents the edge pressure, which is the free-stream pressure just outside

the boundary layer. The next equation used to compute the real gas Blasius boundary

layer is the species conservation equation:

⇢u
@cs
@x

+ ⇢v
@cs
@y

=
@

@y

✓
⇢D

@cs
@y

◆
+ Ẇs (2.8)

In equation 2.8, cs represents the concentration of species s. D is the binary di↵usion

coe�cient, and Ẇs is the chemical source term for species s, given by Ẇs = Ms

d[s]
dt
. In
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the code provided, species s refers to either oxygen (O2) or nitrogen (N2). The final

equation necessary is the energy conservation equation. This is quite di↵erent than the

energy conservation equation for an ideal gas, and is given by:

⇢u
@I

@x
+ ⇢v

@I

@y
=

@

@y

"
µ

Pr

@I

@y
+ µ

✓
1� 1

Pr

◆
1

2

@u2

@y
�
✓

1

Le
� 1

◆
⇢D

X

s

@cs
@y

#
(2.9)

Pr is the Prandtl number. D is the mass di↵usivity of the flow, and Le is the Lewis

number, ↵

D
. I represents the total enthalpy of the system, given by:

I = h+ u
2

2

h =
P

cshs

hs =
R

T

0 CpsdT + h0
s
.

where Cps is the specific heat and h0
s
is the heat of formation of species s.

2.3 Linear Stability Theory

A stability analysis performed on the boundary layer profiles enables one to

determine the shift from laminar to turbulent flow, allowing for the proper design of

flight surfaces and vehicle geometry. To make such analyses possible, the normal mode

concept is adopted. Using the normal mode concept, it is possible to calculate values

for ↵, the wave number associated with a disturbance. The formulation for the stability

analysis is given below.

The following equations (2.10 - 2.12) are the disturbance form of the Navier-

Stokes equations for an incompressible flow. The LST code used in this thesis is

designed for compressible flow, which is more realistic [12]. The equations used are

similar to those for incompressible flow, with some additional terms not reproduced

here. Additionally, these equations assume parallel flow, meaning that the velocity,

density, and temperature profiles within the boundary layer are only a functions of the

wall-normal distance y. This is valid to first order in the Taylor expansion sense, be-

cause the boundary layer is slowly varying [13]. The flow is also assumed to be uniform

across the cross-section, so the z direction is disregarded.
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Below, � is a general variable which can represent ⇢, u, v, T , and is broken into base

state and disturbance terms:

� =

8
>>>>>><

>>>>>>:

⇢

u

v

T

9
>>>>>>=

>>>>>>;

,�(x, y, t) = �̄(y)|{z}
basestate

+�0(x, y, t)| {z }
disturbance

And adding the parallel flow assumption:

ū(y), v̄ = 0, p̄(y)

Yields the 2D, parallel, incompressible flow equations of motion:

@u0

@x
+

@v0

@y
= 0 (2.10)

@u0

@t
+ ū

@u0

@x
+ v0

@ū

@y
= �@p0

@x
+

1

Re
r2u0 (2.11)

@v0

@t
+ ū

@v0

@x
= �@p0

@y
+

1

Re
r2v0 (2.12)

The Navier-Stokes disturbance equations yield a separable solution, of the form �0(x, y, t) =

�̂(y)ei↵x�i!t[14]. Here, �̂(y) is a complex function, and represents the shape of the wave.

This thesis focuses on the spatial stability theory, and the wave number ↵. ↵ is taken to

be a complex number, ↵ = ↵r+i↵i. ! is a parameter, the non-dimensional frequency of

the disturbance. This was specified each time the stability code was run. The growth

rate of the disturbance relating to this wave number is given by ei↵x, written explicitly

in complex form by ei↵rx�↵ix [14]. The real part of this expression now depends on ↵i,

and the streamwise distance x. As x increases (traveling downstream), the excitation

will diminish if ↵i is positive, and grow if ↵i is negative. Therefore, a negative value of

↵i corresponds to a mode with a positive growth rate — an unstable mode. Assuming

9



this disturbance form, the problem reduces to a generalized eigenvalue problem, which

is solved in Matlab.
The equations above are formulated into a matrix, and then solved using an

eigenvalue solver. The boundary conditions assumed [13] are:

• no-slip, impenetrable wall (u
��
y=0

= v
��
y=0

= 0)

• density (⇢) continuity

• Temperature is specified (either a constant wall temperature or adiabatic)

• Disturbances decay far away from the wall (⇢0, u0, v0, T 0 ���!
y!1

0)

As this system is solved numerically, we get a discretized representation of both the

discrete and continuous solution spectra. The discrete spectrum is associated with

bound states of a system, whereas the continuous spectrum represents unbounded

states. When plotted, (figure 2.1), the discrete points can be picked out, as they do

not fit the “trends” of the continuous points. The focus of this thesis is the second-mode

instability, which is contained in the discrete spectrum.

Figure 2.1: An example spectrum output from the linear stability code.

This spectrum was obtained from running an adiabatic test condition (see Chap-

ter 3 for more information). The point circled in red is one of the discrete solutions,
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found to correspond with the slightly unstable second-mode in this case. To validate

that the selected point is, in fact, a second mode, one can plot the u(y) and v(y)

velocity functions associated with this eigenvalue. The functions corresponding to a

discrete mode have a distinct shape, and are smooth.The continuous spectrum is often

subject to greater amounts of computational noise, and, as a result, can have shape

functions which are clearly not physically representative. An example comparing two

such functions is shown in figure 2.2, with boundary layer profiles evaluated at x =

0.1m. The horizontal axis is |u|, while the vertical axis is y, the wall-normal distance,

nondimensionalized by the boundary-layer length scale (bL).

(a) u(y), Discrete, Second-Mode (b) u(y), Computational Mode

Figure 2.2: Shape function plots corresponding to a discrete, second-mode (left) and a

computational mode (right).

Something of note is the lack of any chemistry-related terms in the Linear Sta-

bility formulation. Klentzmann and Tumin (2013) found that when considering the

stability of second modes in a hypersonic boundary layer, the chemical terms could

be neglected from the stability calculation, as they have no significant e↵ect on the

stability results [15]. Instead, the chemistry only needs to be accounted for in the base

state itself, used to generate the Blasius boundary layer profiles that is then analyzed

for instability.
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Chapter 3

RESULTS

3.1 Test Conditions

To compute the chemical and ideal gas Blasius boundary layer profiles, a set

of “test conditions” was prescribed. This was broken into two parts: the parameters

which were fixed, and the parameters which were varied.

Constant Parameters:

• Mach Number = 10

• Pe = 0.017atm

• Te = 230K

• x = 0.1m

These parameters correspond to the atmospheric conditions at 30 kilometers
above sea level, in alignment with Ref. [16]. 30 kilometers was used in the HIFiRE
project, as a representative altitude for hypersonic flight experiments [17].

Varied Parameters:

• Wall Condition: Adiabatic, Constant Temperature

• Wall Temperature: 2000K, 5500K (for Constant Temperature cases)

• Air Properties: Ideal Gas, O2 dissociation enabled, N2 dissociation enabled.

At each of the three wall conditions, the boundary layer profiles were plotted.
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3.2 Boundary Layer Profiles

(a) Horizontal Velocity (b) Temperature

(c) Density (Nondimensionalized by Edge Den-

sity)

Figure 3.1: Horizontal Velocity, Temperature, and Density profiles for the Adiabatic

Wall, plotted against the Wall-Normal distance.

From the Adiabatic case, the wall temperature is around 3500-4000K, due to

frictional heating. This determined the two other test cases at constant wall temper-

ature: One at 2000K (actively cooled wall), and the other at 5500K (actively heated

wall). This case also shows an interesting e↵ect of the chemical reactions taking place:

the gaseous dissociations and recombinations work to lower the wall temperature [8].

13



(a) Horizontal Velocity (b) Temperature

(c) Density (Nondimensionalized by Edge Den-

sity)

Figure 3.2: Horizontal Velocity, Temperature, and Density profiles for the actively

cooled wall (Twall = 2000K), plotted against the Wall-Normal distance.

Considering the cooled wall temperature profile, the system doesn’t reach the

location where gaseous dissociation is prevalent (>3000K)[8]. As such, the profiles

generated for the ideal gas, O2 reactions, and N2 reactions are all quite similar.
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(a) Horizontal Velocity (b) Temperature

(c) Density (Nondimensionalized by Edge Den-

sity)

Figure 3.3: Horizontal Velocity, Temperature, and Density profiles for the actively

heated wall (Twall = 5500K), plotted against the Wall-Normal distance.

In the actively heated wall case, both oxygen and nitrogen dissociations are

prevalent at the boundary layer temperatures [8]. This has a pronounced e↵ect in

separating the ideal and real gas boundary layers.
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3.3 Instability Envelope Plots

After the boundary layer profiles were computed, they were analyzed for insta-

bilities (see section 2.3 for details). The linear stability code was run at a “sweep” of

specified frequencies (nondimensionalized to !), until the second mode crossed from

unstable to stable (↵i moved from negative to positive). This process resulted in the

following three “instability envelopes” — frequencies at which the boundary layer was

unstable.

(a) Adiabatic Wall (b) Active Cooling (Tw = 2000K)

(c) Active Heating (Tw = 5500K)

Figure 3.4: Instability Envelope Plots for each of the three wall test conditions. �↵i

has been plotted, to make the plot more easily understandable. Run at x = 0.1 meters.
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3.4 Discussion of Results

3.4.1 Theoretical Analysis

As stated earlier in section 1.2, using the thermoacoustic representation of sec-

ond mode instabilities, the stability is analyzed as if it were a wave trapped in an

acoustic impedance well. This impedance well is formed by two “walls”: one being the

physical wall of the flat plate, and the other is the sharp density gradients which form

in the boundary layer (this is the point where the density profile is almost flat). Con-

sistent with the properties of standard waves, if the distance is larger, the resonance

frequency is lower, and vice versa. So one possible reason for the shift of the instability

envelope to lower frequencies is the increase in height of the boundary layer. Another

consideration is the local speed of sound in the boundary layers. The instabilities prop-

agate at the speed of sound. Therefore, a lower local speed of sound will lead to lower

frequencies being unstable, shifting the envelope to the left.

Looking over the density profiles and local speed of sound plots provides a

qualitative explanation as to why the instability plots shift. In order to quantify this,

the metric used was the average local speed of sound in the boundary layer divided by

the boundary layer height (k = ā

�
). This metric provides us with a numerical value,

which we can relate to the expected peak frequency. The boundary layer height was

taken to be the point at which the density profile has an inflection point, or a zero-

valued second derivative. The local speed of sound a =
p
�RT , where � = cp

cv
= 1.4

and R is the individual gas constant, taken as 288.7 for an ideal gas, and calculated

by the chemically reacting boundary layer code [8] for the real gas cases. Then, the

average local speed of sound ā is given by

ā =
1

�

Z
�

0

p
�RTdy

Furthermore, when considering a real gas, � and R could not be set as constants. They

were found by the following calculations:

� =
Cp

Cv

, �air = 1.4, �gas(y) =
Xdia(y) ⇤ Cp,dia +Xmono(y) ⇤ Cp,mono

Xdia(y) ⇤ Cv,dia +Xmono(y) ⇤ Cv,mono
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where X represents the mass fraction of the species. The subscripts dia and mono refer

to the diatomic and monoatomic gases, respectively (O2 and O, for example). Table

3.1 lists the formulas to find Cp, CV as a function of Rgas for diatomic and monoatomic

gases.

Diatomic Monoatomic

Cp

7Rgas

2
5Rgas

2

Cv

5Rgas

2
3Rgas

2

Table 3.1: Formulas to find Cp,Cv from Rgas, the specific gas constant, for diatomic

and monoatomic gases.

The code from Tumin [8] outputs the mass fraction of each species, as well as

Rgas/Rgas,edge, as functions of the wall-normal distance. Rgas,edge is also provided, so

Cp and Cv can be calculated along the wall normal distance as well.

To see if the stability results calculated are consistent with the thermoacoustic

interpretation of second mode instabilities, each of the three test cases is analyzed in

further detail.

18



3.4.2 Adiabatic Wall

(a) Density (Nondimensionalized by Edge Den-

sity)

(b) Local Speed of Sound

(c) Instability Envelope

Figure 3.5: Density profile, local speed of sound profile, and instability envelope for

the Adiabatic case.

As seen in figure 3.5a, the density profiles for all three gases are quite close.

While the Nitrogen Reaction boundary layer appears to be the smallest, no clear,

qualitative interpretation is gained. However, the local speed of sound plots (b) align

with the theoretical predictions. The speed of sound is the largest for the ideal gas,

then slower for the nitrogen reactions, and then slower still for the oxygen reactions.

This matches the instability envelopes (c), where the ideal gas “peaks” at the highest

frequency, followed by the nitrogen case and then the oxygen case.
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Using our pre-described metric for comparison, kO2 = 2.26⇥ 105, kN2 = 2.45⇥ 105,

and kId = 2.55⇥ 105. Again, this lines up with the produced instability envelope plot,

as the lower k predicts a lower peak frequency of instability. The value of kId also

matches up with the frequency corresponding to the peak in the ideal gas instability

envelope, but the same cannot be said for the real gas cases.

3.4.3 Actively Cooled Wall (Twall = 2000K)

(a) Density (Nondimensionalized by Edge Den-

sity)

(b) Local Speed of Sound

(c) Instability Envelope

Figure 3.6: Density profile, local speed of sound profile, and instability envelope for

the Actively Cooled (Twall = 2000K) case.
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In the density plot for the cooled wall case (fig. 3.6a), the oxygen reaction case

has the largest boundary layer height. The nitrogen and ideal gas cases are barely

separated. Moving to the speed of sound profiles (b), it is again evident that the

oxygen reaction case has the lowest speed of sound. The profiles for the nitrogen and

ideal gas case are again similar, though the ideal gas case is slightly faster. These

profiles physically make sense — Nitrogen requires higher temperatures to dissociate

than oxygen. Therefore, when the wall is cooled, the nitrogen is less able to dissociate,

acting more like an ideal gas. The qualitative analysis of the density and speed of

sound profiles agree with what is seen in the instability envelope plots (c), with the

ideal gas being at the highest frequencies, followed by nitrogen, and lastly oxygen.

Numerically, the numbers for comparison are kO2 = 2.49⇥ 105, kN2 = 2.75⇥ 105,

and kId = 2.75⇥ 105. The values of k for nitrogen and the ideal gas are identical, and

higher than the metric value for oxygen, even though all three peaks appear to be quite

evenly spaced in frequency. At a low wall temperature, this actually can be explained:

nitrogen reactions are minimized, e↵ectively becoming an ideal gas, whereas oxygen

reactions are still able to take place. What is curious, however, is the even separation

in peak frequencies for all three profiles on the envelope plot. Further investigation

may explain this discrepancy. Once again, the metric is an accurate prediction for the

peak instability frequency for the ideal gas, but not for the real gases.
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3.4.4 Actively Heated Wall (Twall = 5500K)

(a) Density (Nondimensionalized by Edge Den-

sity)

(b) Local Speed of Sound

(c) Instability Envelope

Figure 3.7: Density profile, local speed of sound profile, and instability envelope for

the Actively Heated (Twall = 5500K) case.

The density profiles for the actively heated case (3.7a) show that the ideal

gas case has a significantly lower boundary layer than the real gas cases. However,

considering the instability envelopes in (c), it’s evident that the profile for the ideal gas

peaks only slightly higher than the two real gases. To explain this, one can examine

the local speed of sound profiles (b). Here, both the real gases generate a higher speed
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of sound than the ideal gas. This shifts their instability envelopes towards the higher

frequency range, moving them closer to that of the ideal gas case.

Using the numerical metric once again, kO2 = 2.07⇥ 105, kN2 = 2.14⇥ 105, and

kId = 2.45⇥ 105. The values for oxygen and nitrogen reactions are quite close, and the

peaks of their instability profiles appear quite close together as well. The value for the

ideal gas is higher, and the instability profile is shifted to the higher frequency range

as expected. The metric produces an accurate prediction of the peak frequency for the

ideal gas instability.

3.4.5 Instability Growth Rate

The thermoacoustic interpretation for second-mode instability expects the source

term for these thermoacoustic resonators to be the Reynolds stresses in the boundary

layer. The acoustic energy equation is given in Kuehl 2018 [6], assuming an inviscid

flow:
1

2
⇢
Du2

Dt
+

1

2⇢c2
DP 2

Dt| {z }
energy

+ r · (Pu)| {z }
div. acst. pwr.

= 0 (3.1)

In equation 3.1, u2 = u2+v2, where u, v are the streamwise and wall-normal components

of velocity, respectively. c =
p

�P/⇢ is the speed of sound, where � = cp/cv. P is

pressure, and ⇢ is density. Furthermore, Kuehl derives the one-dimensional, ideal gas,

inviscid, cycle-averaged disturbance energy acoustic equation to be

Dhei
Dt

= �
⌧

d

dy
(⇢̄T 0v0)

�
+

⌧
d

dy

�
T̄⇢0v0

���
(3.2)

where

hei = 1

2
⇢e

⌦
u02↵+ 1

2⇢ec2
⌦
P 02↵

is the disturbance energy norm. From equation 3.2, it is evident that the thermoa-

coustic disturbances will grow when the thermoacoustic Reynolds stresses (in angle

brackets) are negative. For viscous flow, the viscous Reynolds stresses must also be

accounted for in equations 3.1 and 3.2, adding several additional terms which are not

reproduced here. One such viscous Reynolds stress term, u0v0 @ū
@y
, is believed to be the
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energy source for the first-mode instability, and so was the term chosen to represent

the viscous Reynolds Stress.

As the disturbances grow in areas of negative thermoacoustic Reynolds stress,

it follows that the more negative the Reynolds stresses are, the larger the instability

growth rate should be. To analyze this theory further, the thermoacoustic and viscous

Reynolds stresses for each wall case are given.
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Adiabatic Wall

(a) Ideal Gas (b) N2 Reactions (c) O2 Reactions

(d) Instability Envelope

Figure 3.8: Reynolds Stress Plots for the Adiabatic case. The black line represents the

divergence of acoustic power (thermoacoustic Reynolds stress) and the red line shows

the viscous Reynolds stress. Both are plotted in power per unit volume. The horizontal,

dashed line represents the boundary layer height. Each stress was calculated at the

corresponding peak unstable frequency.

In the instability envelope, the ideal gas peak has the largest magnitude. The

nitrogen and oxygen peaks are lower, and fairly equal. This trend can also be seen in

the Reynolds stress plots, when studying the thermoacoustic Reynolds stress (black).

The ideal gas has a large negative region, while the nitrogen and oxygen reaction cases
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are less so. However, this trend only holds if we analyze the curves from the middle of

the boundary layer downwards.

Actively Cooled Wall (Twall = 2000K)

(a) Ideal Gas (b) N2 Reactions (c) O2 Reactions

(d) Instability Envelope

Figure 3.9: Reynolds Stress Plots for the Actively Cooled (Twall = 2000K) case. The

black line represents the divergence of acoustic power (thermoacoustic Reynolds stress)

and the red line shows the viscous Reynolds stress. Both are plotted in power per unit

volume. The horizontal, dashed line represents the boundary layer height. Each stress

was calculated at the corresponding peak unstable frequency.

For the cooled wall case, analyzing the curves from the middle of the boundary

layer downwards yields results consistent with the instability envelopes. The ideal
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gas peak is significantly higher than the two real gas cases — while the Reynolds

stress curves may look similar, note that for the ideal gas, the scale is one order of

magnitude larger. The nitrogen and oxygen plots appear to have equal net-negativity,

and their peaks do appear similar in magnitude. However, further analysis is necessary

to determine why the Reynolds stress plots look similar, while the instability profiles

have di↵erent peak magnitudes.
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Actively Heated Wall (Twall = 5500K)

(a) Ideal Gas (b) N2 Reactions (c) O2 Reactions

(d) Instability Envelope

Figure 3.10: Reynolds Stress Plots for the Actively Heated (Twall = 5500K) case. The

black line represents the divergence of acoustic power (thermoacoustic Reynolds stress)

and the red line shows the viscous Reynolds stress. Both are plotted in power per unit

volume. The horizontal, dashed line represents the boundary layer height. Each stress

was calculated at the corresponding peak unstable frequency.

For the heated wall case, all three peaks in the instability envelope plot have

comparable magnitudes. Analyzing from the middle of the boundary layer downwards,

we do see that the average values of the thermoacoustic Reynolds stress curves are

similar — ever so slightly negative. An interesting point, however, is that in this case,
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the oxygen and nitrogen instability envelopes have peaks that are greater in magnitude

than in the actively cooled case. But, the Reynolds stress plots show larger negative

regions in the actively cooled case! While the trend of negative area to peak instability

strength has held in each of the three cases, cross-comparing raises questions.

While trends have been found between the thermoacoustic Reynolds stress and

the instability growth rate, it is evident that further study must be performed to

thoroughly understand what the energy source term is for the instabilities. There

seems to be promise in analyzing the thermoacoustic Reynolds stresses as one factor,

but more sources are probably present. Additionally, to find such a trend, only the

inner portion of the boundary layer was considered. The thermoacoustic stress appears

to reach large amplitudes near the outer edge of the boundary layer, which has not yet

been explained. This is a recommended line of further investigation.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

Overall, it is evident that the inclusion of real gas e↵ects modifies the stability

of a hypersonic boundary layer. More specifically, the dissociation of oxygen (O2) and

nitrogen (N2) gases shifts the perceived instabilities into a lower frequency range than

observed in an ideal gas. Additionally, the inclusion of such real gas e↵ects decreases

the instability growth rate.

Su�cient explanations for the frequency shifting of the instability envelopes has

been found, attributed to both the boundary layer height and the local speed of sound

in the boundary layer. The local speed of sound modifies how quickly the instability

can propagate. The distance between the physical wall and the sharp boundary layer

density gradients dictates the size of the acoustic impedance well, and like a typical

oscillation, a larger distance leads to lower frequency resonance. More work is necessary

to properly predict the peak instability growth rates — the metric used in this thesis,

↵̄

�
, generally corresponded to the relative peak frequency in each case, but was not

always an accurate indicator. Furthermore, the metric was unreliable in predicting

the frequency at which the peak would occur for the chemically reacting cases, but

successful in the ideal gas cases, which prompts investigation.

The thermoacoustic Reynolds stresses present in the boundary layer do appear

to be a source of energy for the thermoacoustic resonators believed to be the second-

mode instabilities. As expected, large, negative Reynolds stresses corresponded to

relatively larger magnitudes of instability growth. However, more factors must be

involved, as this was not a strong correlation. Our analysis focused on the center

section of the acoustic impedance well, neglecting edge e↵ects. These edge e↵ects may

change the Reynolds stress results, warranting further study. It is also evident that the
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term chosen in this thesis to represent the viscous Reynolds stresses was not su�cient

to explain the varying instability strengths — More terms from the viscous energy

disturbance equation must be included.

In summary, this thesis was able to produce results similar to what was achieved

by Tumin, Ulker, and Klentzmann in Ref. [8], contrasted with the results using an ideal

gas approximation. The discrepancies were explained in the context of the thermoa-

coustic interpretation of second-mode instabilities. General trends that aligned with

the thermoacoustic interpretation were found, but further work is still necessary to

verify how the thermoacoustic resonator model is altered by finite rate chemistry.
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